NUTRITIONAL MANAGEMENT STRATEGIES TO IMPROVE REPRODUCTIVE EFFICIENCY IN DAIRY CATTLE

José Eduardo P. Santos
Veterinary Medicine Teaching and Research Center,
School of Veterinary Medicine, UC—Davis,
18830 Road 112, Tulare, CA 93274

Abstract

Nutrition has an important impact on the reproductive performance of dairy cattle. Energy is the major nutrient required by adult cattle, and inadequate energy intake has a detrimental impact on reproductive activity of the bovine female. Cows under negative energy balance have lowered plasma glucose, insulin and insulin-like growth factor-I (IGF-I), reduced peak frequency of LH pulses, lowered plasma progesterone, and impaired ovarian activity. Incidence of postpartum anovulation and anestrus and reduced fertility is magnified by losses of body condition during the early postpartum period. Resumption of ovulatory cycles is associated with energy balance, but seems to be mediated by a rise in plasma IGF-I, which is linked to nutritional status and concentrations of insulin in blood. Feeding diets that promote higher plasma glucose and insulin may improve the metabolic and endocrine status of cows. Addition of supplemental fat to the diet improves energy intake, modulates PGF2α secretion by the uterus, affects ovarian dynamics, enhances luteal function, and improves fertility. More specifically, some fatty acids might impact fertilization rate and embryo quality in dairy cows. Although gossypol intake seems not to affect lactation performance of dairy cows, it may affect fertility when the resulting plasma gossypol concentrations are excessive. Excessive intake of dietary crude protein or ruminally degradable protein increases urea nitrogen concentration in blood and tissues and alters uterine function, which may impair conception rates. Although evidence suggests that protein may interfere with reproduction, dietary changes should not be made in detriment to production and profitability.

Introduction

Selection of dairy cattle for milk yield has linked the endocrine and metabolic controls of nutrient balance and reproductive events so that reproduction in dairy cattle is compromised during periods of nutrient shortage, such as early lactation. The energy costs to synthesize and secrete hormones, to ovulate, and to sustain an early developing embryo are probably minimal compared to the energy needs
for maintenance and lactation. However, the metabolic and endocrine cues associated with negative energy balance (NEB) impair resumption of ovulatory cycles, oocyte quality and embryo quality, and establishment and maintenance of pregnancy in dairy cattle.

As the demands for milk synthesis increase, reproductive functions may be depressed when no compensatory intake of nutrients is achieved. Numerous recent studies have reported that reproductive performance is compromised by the nutrient demands when high levels of production are obtained. Milk yield increases at a faster rate in the first 4 to 6 weeks after parturition than energy intake, and high yielding cows will experience some degree of negative balance of energy and other nutrients during the early postpartum period. When cows experience a period of NEB, the blood concentrations of nonesterified fatty acids increases at the same time that insulin-like growth factor-I (IGF-I), glucose, and insulin are low. These shifts in blood metabolites and hormones might compromise ovarian function and fertility. It has also been reported that energy balance and dry matter (DM) intake might affect plasma concentrations of progesterone (Vasconcelos et al., 2003; Villa-Godoy et al., 1988), which may interfere with follicle development and maintenance of pregnancy.

During recent decades genetic selection and improved management of herds have dramatically increased milk production of dairy cows at the same time that fertility has decreased (Butler, 1998). Selection for higher milk production in dairy cattle has changed endocrine profiles of cows so that blood concentrations of bovine somatotropin and prolactin have increased, whereas insulin has decreased (Bonczeck et al., 1988). These hormonal changes and the increased nutrient demands for production might negatively impact reproduction of dairy cows. However, adequate nutrition and sound management have been shown to offset depression in fertility in herds with average milk production exceeding 12,000 kg/cow/year (Nebel and McGilliard, 1993; Jordan and Fourdraine, 1993). Several nutritional strategies have been proposed to improve reproduction of dairy cattle with no detrimental effect on lactational performance. Maximizing DMI during the transition period, minimizing the incidence of periparturient problems, adding supplemental fat to diets, manipulating the fatty acid content of fat sources, balancing diets for adequate amounts of ruminally degradable (RDP) and undegradable proteins (RUP), and optimizing supply of ruminally fermentable carbohydrates during late gestation and early lactation are expected to benefit reproduction in dairy cattle. However, factors such as high incidence of metabolic diseases early postpartum, poor body condition score (BCS) at first insemination, high milk urea N, and excessive gossypol concentrations in plasma are detrimental to fertility of dairy cattle.

RESUMPTION OF POSTPARTUM CYCLICITY

The onset of lactation creates an enormous drain of nutrients in high producing dairy cows, which in many cases antagonizes the resumption of ovulatory cycles.
During early postpartum, reproduction is deferred in favor of individual survival. Therefore, in the case of the dairy cow, lactation becomes a priority in detriment of reproductive functions.

During periods of energy restriction, oxidizable fuels consumed in the diet are prioritized toward essential processes such as cell maintenance, circulation, and neural activity (Figure 1; Wade and Jones, 2004).

Homeorhetic controls in early lactation assure that body tissue, primarily adipose stores, will be mobilized in support of milk production. Therefore, the early lactation dairy cow that is unable to consume enough energy-yielding nutrients to meet the needs of production and maintenance will sustain high yields of milk and milk components at the expense of body tissues. This poses a problem to reproduction, as delayed ovulation has been linked repeatedly with energy status (Beam and Butler, 1998; Beam and Butler, 1997; Canfield et al., 1990; Butler and Smith, 1989). Energy deprivation reduces the frequency of pulses of luteinizing hormone (LH), thereby impairing follicle maturation and ovulation. Furthermore, undernutrition inhibits estrous behavior by reducing responsiveness of the central nervous system to estradiol by reducing the number of estrogen receptor α content in the brain (Figure 2; Hileman et al., 1999).
Figure 2. Changes in hypothalamic estrogen receptor-containing cells number in response to feed restriction in ewes (Hileman et al., 1999).

Generally, the first postpartum ovulation in dairy cattle occurs 10 to 14 days after the nadir of NEB (Beam and Butler, 1998; Beam and Butler, 1997; Canfield et al., 1990; Butler and Smith, 1989), and severe weight and BCS losses caused by inadequate feeding or illnesses are associated with anovulation and anestrus in dairy cattle. In fact, cows with low BCS at 60 d postpartum are more likely to be anovular (Figure 3; Santos et al., 2004a), which compromises reproductive performance at first postpartum insemination.
Figure 3. Relationship between the frequency of lactating dairy cows classified as anovulatory/anestrous based on plasma progesterone (< 1.0 ng/ml) at 51 and 63 days in milk (DIM) and body condition score (BCS) at 70 DIM (Santos et al., 2004a).

Prolonged postpartum anovulation or anestrus extends the period from calving to first artificial insemination and reduces fertility during the first postpartum service (Stevenson et al., 2001). In fact, anovular cows not only have reduced estrous detection and conception rates, but also have compromised embryo survival (Santos et al., 2004b). On the other hand, an early return to cyclicity is important in regard to early conception. The timing of the first postpartum ovulation determines and limits the number of estrous cycles occurring prior to the beginning of the insemination period. Typically, in most dairy herds, fewer than 20% of cows should be anovulatory by 60 days postpartum (Stevenson, 2001). Estrus expression, conception rate, and embryo survival improved when cows were cycling prior to an estrous synchronization program for first postpartum insemination (Santos et al., 2004a; Santos et al., 2004b).

Resumption of ovarian activity in high producing dairy cows is determined by energy status of the animal. Therefore, feeding management that minimizes losses of body condition during the early postpartum and incidence of metabolic disorders during early lactation should increase the number of cows experiencing a first ovulation during the first 4 to 6 weeks postpartum.

ENERGY AND REPRODUCTION

Energy intake appears to have the greatest impact on energy status of lactating dairy cows. Villa-Godoy et al. (1988) reported that variation in energy balance in postpartum Holstein cows was influenced most strongly by DMI (r = 0.73) and less by milk yield (r = -0.25). Therefore, differences among cows in the severity of energy balance are more related with how much energy they consume than with how much milk they produce.

During periods of NEB, blood concentrations of glucose, insulin, and IGF-I are low, as well as the pulse frequency of GnRH and LH. Plasma progesterone concentrations are also affected by energy balance of dairy cows. These metabolites and hormones have been shown to affect folliculogenesis, ovulation, and steroid production in vitro and in vivo. The exact mechanism by which energy affects secretion of releasing hormones and gonadotropins is not well defined, but it is clear that lower levels of blood glucose, IGF-I, and insulin may mediate this process.

It has been suggested that NEB influences reproduction of dairy cows by impacting the quality and viability of the oocyte of the ovulatory follicle and the CL resultant of the ovulation of that follicle. Because there is substantial evidence that...
metabolic factors can influence early follicular development, it is conceivable that changes in metabolism during periods of NEB could influence preantral follicles destined to ovulate weeks later during the breeding period. To test this hypothesis, Kendrick et al. (1999) randomly assigned 20 dairy cows to one of two treatments formulated so that cows consumed either 3.6% (high energy) or 3.2% (low energy) of their body weight. Follicles were transvaginally aspirated twice weekly and oocytes were graded based upon cumulus density and ooplasm homogeneity. Cows in better energy balance (high energy) had greater intrafollicular IGF-I and plasma progesterone and tended to produce more oocytes graded as good. Therefore, NEB not only delays resumption of ovulatory cycles, but it might also influence the quality of oocytes once cows are inseminated.

Nutritional Manipulation to Increase Energy Intake

Nutritional efforts to minimize the extent and duration of NEB may improve reproductive performance. The first and most important factor that affects energy intake in dairy cows is feed availability (Grant and Albright, 1995). Therefore, dairy cows should have high quality palatable diet available at all times to assure maximum DM intake. However, DM intake is limited during late gestation and early lactation, which can compromise total energy intake and reproductive performance. Several nutritional management strategies have been proposed to increase energy intake during early lactation. Feeding high quality forages, increasing the concentrate: forage ratio, or adding supplemental fat to diets are some of the most common ways to improve energy intake in cows.

Intake of energy increases linearly with increasing grain in the diet up to 55 to 60% of the DM. Diets with more than 60% concentrate and limited fiber content are associated with higher ruminal osmolarity, lower rumen pH, increased VFA in the rumen and in the portal system, and decreased DMI.

Diets with greater amounts of concentrate have higher content of NFC. Starch is the most important NFC in diets for high producing cattle. Degradation of starch in the rumen increases the proportion of propionate relative to other VFA and enhances glucose synthesis by the liver. Both glucose and propionate are insulin secretagogues, and diets with high ruminally degradable starch increase liver output of glucose (Theurer et al., 1999) and plasma concentrations of glucose and insulin (Santos et al., 2000).

A number of studies have demonstrated the importance of insulin as a signal mediating the effects of acute changes in nutrient intake on reproductive parameters in dairy cattle. In early postpartum dairy cattle under NEB, reduced expression of hepatic growth hormone receptor 1A (GHR-1A) is thought to be responsible for the lower concentrations of IGF-I in plasma of cows (Radcliff et al., 2003). Because IGF-I
is an important hormonal signal that influences reproductive events such as stimulation of cell mitogenesis, hormonal production, and embryo development, among other functions, increasing concentrations of IGF-I early postpartum is important for early resumption of cyclicity and establishment of pregnancy. It is interesting to note that insulin mediates the expression of GHR-1A in dairy cows (Butler et al., 2003; Roads et al., 2004), which results in increased concentrations of IGF-I in plasma. Because IGF-I and insulin are important for reproduction in cattle, feeding diets that promote greater insulin concentrations should benefit fertility.

Gong et al. (2002) fed cows of low- and high-genetic merit diets that were isocaloric, but differed in their ability to induce high or low insulin concentrations in plasma. The authors observed that diets that induced high insulin reduced the interval to first postpartum ovulation, increased the proportion of cows ovulating in the first 50 d postpartum, and improved conception rate at first AI (Table 1).

Table 1. Effect of diets designed to alter plasma insulin concentrations on reproductive parameters of high- and low-genetic merit postpartum dairy cows (Gong et al., 2002).

<table>
<thead>
<tr>
<th>Genetic merit</th>
<th>Diet</th>
<th>Low Insulin</th>
<th>High Insulin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Plasma insulin, ng/mL</td>
<td>0.34</td>
<td>0.21</td>
<td>0.48</td>
</tr>
<tr>
<td>Ovulation in first 50 d postpartum, %</td>
<td>60</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Days to first ovulation</td>
<td>43</td>
<td>54</td>
<td>28</td>
</tr>
<tr>
<td>Conception rate to first AI, %</td>
<td>62.5</td>
<td>37.5</td>
<td>66.7</td>
</tr>
</tbody>
</table>

1 Effect of high-insulin diet (P < 0.05).

Recently, monensin (Rumensin 80®, monensin sodium, Elanco, Greenfield, IN) was approved for use in lactating dairy cattle to enhance milk production efficiency. However, although not labeled for treatment of subclinical ketosis, monensin supplementation of transition dairy cows increases plasma glucose concentrations and reduces subclinical ketosis. Because monensin increases propionate production in the rumen and glucose concentrations in plasma, it is expected that monensin supplementation will improve plasma insulin concentrations and impact reproductive performance. When cows were treated with a controlled release capsule that delivers approximately 335 mg of monensin/d, risk for ketosis, displaced abomasum and multiple illnesses were reduced, but reproductive parameters were not altered (Table 2; Duffield et al., 1999).
Table 2. Effect of monensin in a controlled release capsule on conception rates of dairy cows [Duffield et al., 1999].

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Monensin</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cows, n</td>
<td>406</td>
<td>403</td>
</tr>
<tr>
<td>Conception Rate, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Al</td>
<td>35.2</td>
<td>34.5</td>
</tr>
<tr>
<td>Second Al</td>
<td>37.6</td>
<td>41.5</td>
</tr>
<tr>
<td>Third Al</td>
<td>40.7</td>
<td>38.6</td>
</tr>
<tr>
<td>>3 Al</td>
<td>60.0</td>
<td>64.1</td>
</tr>
</tbody>
</table>

Feeding fat and fatty acids

Feeding fat is a common method to increase the energy density of the diet. However, supplemental fat sources not only provide calories, but also impact tissue metabolism by altering gene expression (polyunsaturated fatty acids; Sumida et al., 1993) or by supplying precursors (acetyl Co-A) for synthesis of other fatty acids or steroids (Staples et al., 1998), or competing with other cell components (Thatcher et al., 2004).

There are different commercial sources of rumen inert fats including hydrogenated fatty acids and calcium salts of fatty acids. These fat sources were originally designed to increase the caloric intake of dairy cows with minimal impact on rumen microbial activity. More recently, there has been an increased interest in designing fat sources rich in the polyunsaturated fatty acids of the ω-6 (linoleic acid, cis-9 cis-12 C18:2ω6n3) and ω-3 (linolenic acid, C18:3ω3; eicosapentaenoic - EPA, C20:5ω3; docosahexaenoic - DHA, C22:6ω3) for delivery to the lower gut for absorption. Because microbial activity in the rumen resulting in lipolysis and biohydrogenation alters the make up of fat sources rich in polyunsaturated fatty acids, methods to protect fatty acids from microbial activity in the rumen have been developed. Staples et al. (1998) reviewed the literature on the effects of fat feeding on reproduction in dairy cows and indicated that increasing dietary fat in the ration usually resulted in improvements in reproductive performance of cows. The authors indicated that the beneficial effects of supplemental fat were observed in spite of provision of calories (Staples et al., 1998).

Unfortunately, the commercial methods available today to “protect” lipids from microbial biohydrogenation are not very effective at preventing saturation of polyunsaturated fatty acids in the rumen (Lundy III et al., 2004). In spite of that, we
attempted to increase the supply of polyunsaturated fatty acids in a Ca salt form in 4 experiments to improve reproductive performance of lactating dairy cows (Bruno et al., 2004; Cerri et al., 2004; Juchem et al., 2004a, Juchem et al., 2004b, Juchem et al., 2002).

I. Effect of Calcium Salts of Fish and Palm Oil on Lactational and Reproductive Performance of Dairy Cows

Seven-hundred and thirty eight multiparous Holstein cows from a commercial dairy farm were assigned to one of the two different diets in a randomized complete block design (Juchem et al., 2002). Cows were blocked according to parity and previous lactation milk yield and, within each block, randomly assigned to one of the two treatment diets containing either tallow (1.65 % diet DM) or Ca salts of fish oil and palm oil (CaSFO, 1.8 % diet DM) to provide equal amounts of fatty acids. All cows received a pre-treatment diet during the first 25 d in lactation that consisted of a blend of each fat supplement (0.8 % of Tallow + 0.9 % of CaSFO) and remained in the treatment diets until 145 d in lactation. The supplemental fat sources were designed to supply no ω-3 fatty acids as eicosapentaenoic (EPA, C20:5n3) and docosahexaenoic (DHA, C22:6n3) when tallow was fed or approximately 10 g of EPA and 10 g of DHA when calcium salts were fed. Based on previous studies (Thatcher et al., 2004), we hypothesized that feeding a calcium salt of ω-3 fatty acids would modulate uterine prostaglandin synthesis and benefit embryo survival in lactating dairy cows.

Yields of 3.5% fat-corrected milk and milk fat were higher for cows fed CaSFO during the thermoneutral (TN) season, however, cows fed tallow produced more milk and 3.5% fat corrected milk during heat stress (HS). Yields of milk fat and true protein were also higher for cows fed tallow during HS. Milk fatty acid profile was altered by feeding CaSFO, with increases in Linoleic, EPA, DHA, and trans-9 cis-11 CLA. Body condition score was lower for cows fed CaSFO at 70 d postpartum during TN, and at 70, 98 and 123 d postpartum during HS. Individual cow DM intake using alkanes at 52 and 100 d postpartum was similar (P = 0.50) for CaSFO and tallow and it averaged 26 kg/d. Digestibility of dry matter in the total tract was higher for cows fed CaSFO, but efficiency of feed utilization (3.5% fat corrected milk/ dry matter intake) was similar for both treatments. No treatment effect was observed on plasma concentrations of glucose and NEFA.

Reproductive performance of dairy cows was generally not affected by treatment (Table 3), but interactions between treatment and season of calving were observed. Pregnancy rates were higher for cows fed CaSFO during the TN season, but lower during HS. Likewise, pregnancy loss during the first 63 d of gestation as similar for both treatments, but cows fed CaSFO tended to experience less embryonic mortality during the TN season, but higher during HS than cows fed tallow.
Table 3. Effect of fat sources differing in fatty acid profile on reproductive performance in multiparous lactating Holstein cows (Juchem et al., 2002).

<table>
<thead>
<tr>
<th>Item</th>
<th>Season¹</th>
<th>P <</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TN</td>
<td>HS</td>
</tr>
<tr>
<td>Cycling (%)</td>
<td>CaSFO</td>
<td>Tallow</td>
</tr>
<tr>
<td></td>
<td>83.8</td>
<td>81.3</td>
</tr>
<tr>
<td>Pregnancy Rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 28</td>
<td>41.6</td>
<td>37.6</td>
</tr>
<tr>
<td>Day 39</td>
<td>39.2</td>
<td>33.5</td>
</tr>
<tr>
<td>Day 63</td>
<td>32.4</td>
<td>28.5</td>
</tr>
<tr>
<td>Second AI</td>
<td>23.4</td>
<td>26.0</td>
</tr>
<tr>
<td>Pregnancy Loss</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 28 to 39</td>
<td>4.8</td>
<td>10.8</td>
</tr>
<tr>
<td>Day 39 to 63</td>
<td>12.7</td>
<td>14.0</td>
</tr>
<tr>
<td>Day 28 to 63</td>
<td>17.2</td>
<td>23.4</td>
</tr>
</tbody>
</table>

¹ TN = thermo neutral season; HS = heat stress season.
² CaSFO = calcium salts of fish and palm oil.

After analyzing Ca salts samples, we determined that the amount of free fat decreased as the storage time increased. In the first few days after manufacturing, the free fat content was approximately 12%, and it decreased to less than 6% after 60 days. Because at the beginning of the study, during the TN season, Ca salts had been stored for several weeks prior to feeding to the cows, and during the HS season it was utilized a few weeks after manufacturing, we suspect that some of the negative effects observed during the HS season are consequent to the higher availability of free polyunsaturated fatty acids in the rumen.

2. Effect of Calcium Salts of Fish and Palm on Lactational and Reproductive Performance of Dairy Cows under Heat Stress

Because of the negative effects observed in cows receiving CaSFO under HS in the previous experiment and the higher free fat content of the calcium salts fed during the HS period, we replicated the same experiment in the summer of 2003 (Bruno et al., 2004).

Dietary treatment and experimental design were the same as described previously. Three-hundred and thirty-one multiparous Holstein cows were assigned
to treatments from May 1st to August 31st, and the study was conducted from May to December of 2003.

Group dry matter intake averaged 25.7 kg/d. Yields of milk, 3.5% fat corrected milk, and milk fat were similar for both treatments, but cows fed CaSFO produced milk with lower concentrations of true protein, resulting in lower yields of milk protein. Similarly, concentrations of lactose and solids nonfat were also lower for cows fed CaSFO. Reproductive performance, as determined by conception rates, pregnancy loss, days open, and proportion of cows pregnant at the end of the study, as similar for both treatments.

3. Effect of Feeding Ca Salts Rich in \(\omega-6\) and trans Fatty Acids During Transition on Lactation, Health, and Reproduction of Dairy Cows

Four-hundred and twenty-three prepartum Holstein dairy cows were assigned to one of the two treatment diets that differed in the supplemental fat source (Juchem et al., 2004a; 2004b). The study started 25 d before the expected calving date, and cows were fed the supplemental fat sources until 70 to 75 d postpartum. The supplemental fat sources were added at equal amounts for both treatments during the pre- (1.9% of the diet DM; ~250 g/cow/d) and postpartum periods (1.5% of the diet DM; ~250 g/cow/d), and they consisted of Ca salts of palm oil (PO) or calcium salts of linoleic and a blend of monoenoic trans fatty acids (LTFA). The calcium salts were the only supplemental fat source fed to cows throughout the entire study.

Yields of milk were similar for both treatments throughout the 70 d experiment. However, because milk fat content decreased beginning at 3 weeks postpartum, 3.5% fat corrected milk production was lower for cows fed LTFA. Yields of milk protein were similar between treatments, but milk from cows fed LTFA had higher milk true protein content (2.78 vs 2.74; \(P < 0.01\)). Feeding LTFA altered the fatty acid profile of milk fat as early as 2 weeks postpartum. Cow fed LTFA had milk fat with greater concentration of linoleic acid, cis-9 cis-11 CLA, and trans fatty acids. Conception rate at first postpartum insemination was higher for cows fed LTFA than those fed PO (36.1 vs 28.1%; \(P = 0.09\)).

4. Effect of Fat Sources Differing in Fatty Acid Profile on Fertilization Rate and Embryo Quality in Lactating Dairy Cows

Because of the positive effects of LTFA on conception rates of lactating dairy cows, we evaluated the effects of these fatty acids on fertilization rate and embryo quality. One hundred and fifty-four lactating Holstein dairy cows were assigned to one of the two treatment diets as described in the previous experiment. After synchronizing the estrous cycle and ovulation, cows were inseminated and uteri flushed 5 d
A total of 161 ovulations were detected in 154 cows, and 14 (18.7%) and 12 (15.2%) cows fed PO and LTFA, respectively, experienced double ovulation when inseminated. The number of structures recovered was 45 and 41 for PO and LTFA, respectively, and the recovery rate (number of structures/number of corpora lutea) was similar for both treatments, and it averaged (53.4%). Fertilization rate tended to be higher (P = 0.11) for cows fed LTA than those fed PO (87.2 vs 73.3%). Similarly, the number of accessory sperm per structure collected was greater (P < 0.001) for cows fed LTA than PO (34.3 vs 21.5), which might partially explain the greater fertilization rate. Cows fed Ca salts of LTFA throughout the transition period and early lactation had a greater (P = 0.06) proportion of embryos classified as high quality compared to cows fed Ca salts of PO (73.5 vs 51.5). Furthermore, the number of total cells (19.4 vs 14.0; P = 0.13) and the proportion of live cells (94.2 vs 85.3%; P = 0.09) tended to be greater for cows fed LTA than those fed PO. Results from this experiment indicate that improvements in fertility of dairy cows at first postpartum AI observed in the previous study might be attributed to improvements in fertilization rate and embryo quality when cows are fed fat sources containing linoleic and monoenoic trans fatty acids during the transition period.

GOSSYPOL AND REPRODUCTION

Gossypol was first discovered by Chinese scientists after noticing that no birth of a child happened for more than a decade in a village where people cooked food with cottonseed oil. Since then, numerous reports in the literature have confirmed the anti-fertility effect of gossypol in mammals. Gossypol disrupts cell membrane metabolism, affects glycolysis, influences mitochondrial and energy metabolism in the cell, and increases fragility of cell membranes, such as in the red blood cells. In fact, erythrocyte fragility has been one of the indicators of potential gossypol toxicosis.

Risco et al. (1992) were among the first to show that gossypol can be toxic to, and even kill, growing cattle. They fed rations to bull calves with 200, 400 or 800 mg/kg of free gossypol (FG) for 120 days. The diets with 400 and 800 mg/kg of FG were considered to be toxic and could potentially cause the death of growing ruminants. Baby calves have little ability to detoxify gossypol, and toxicity can be easily induced by feeding cotton products.

The negative effects of gossypol on fertility of ruminants are clear in males. Studies at the University of Florida and at Kansas State University have shown that as little as 8 g/d of FG fed to young bulls reduced sperm quality and sexual activity (Chenoweth et al., 2000; Velzaquez-Pereira et al., 1998).

Little information is available on the effects of cottonseed or gossypol on fertility of dairy cows. The female ruminant seems to be relatively insensitive to
the antifertility effect of gossypol because of rumen detoxification; but in vitro data indicate some inhibition of embryonic development and ovarian steroidogenesis (Randel et al., 1992). However, a recent study from the University of Florida (Brocas et al., 1997) observed a distinct effect of gossypol on gametes and embryos of cattle. Feeding cottonseed meal to dairy cows did not affect the number of oocytes collected per cow, cleavage rate after in vitro maturation and fertilization, or the proportion of oocytes or embryos that developed to blastocysts. When oocytes were exposed in vitro to physiological levels of gossypol (similar to those observed in plasma of cows fed cotton products), cleavage rate or subsequent development was not affected. In contrast, addition of a higher gossypol concentration to the media reduced embryo cleavage rate. Based on these data, the authors concluded that developing embryos are sensitive to high gossypol concentrations and diets that increase plasma gossypol level may impact fertility of cows.

Three experiments were conducted to determine the effects of three concentrations of (FG) in the diet of Holstein dairy heifers on reproductive parameters by assessing follicle development, luteal function, embryo quality, and embryo development (Coscioni et al., 2003a; Coscioni et al., 2003b; Villaseñor et al., 2003). In all 3 experiments, postpubertal heifers were randomly assigned to one of three isocaloric and isonitrogenous diets differing only in their FG content (from cracked Pima cottonseed): control (C; 0 mg of FG/kg of BW); medium (M; 20 mg of FG/kg of BW); and high (H; 40 mg of FG/kg of BW).

In experiment 1 (Coscioni et al., 2003a), emergence of first and second follicular waves (FW) were similar (P>0.15) for C (1.1 and 9.1 d), M (1.0 and 8.9 d), and H (1.9 and 8.8 d). Deviation of the dominant follicle (DF) after emergence for the first (C=3.5 vs M=3.5 vs H=3.4; P=0.99) and second FW (C=4.0 vs M=4.6 vs H=4.5; P=0.61) was not affected by treatments. Treatment had no effect on CL growth throughout the estrous cycle (P=0.68). Estrous cycle length (P=0.60), maximum follicle diameter for the DF of the first and second FW (P=0.96, P=0.64), period of follicle dominance for the DF of the first and second FW (P=0.99, P=1.0), and diameter of ovulatory follicle (P=0.36), were not influenced by dietary gossypol intake.

In experiments 2 and 3 (Coscioni et al., 2003b, Villaseñor et al., 2003), number of structures collected per heifer were, respectively, 9.4, 8.4, and 8.8 for C, M, and H (P=0.88). Number of embryos graded 1 and 2 were similar for all treatments (P=0.87), and averaged 3.5, 3.6, and 3.3 for C, M, and H, respectively. However, heifers receiving the H diet (5.8) had higher numbers (P<0.01) of grade 3 and degenerated embryos than those receiving the C (3.6) and M (3.2) diets. Numbers of unfertilized oocytes were higher (P<0.01) for heifers fed diets containing gossypol than for controls. High dietary gossypol retarded embryo development, and heifers fed C and M had a lower proportion of embryos classified as morula than those fed H (33.3 vs 20.2 vs 47.7%; P<0.02). Total number of cells in fresh stained embryos were similar for C, M, and H (16.6 vs 14.8 vs 16.4; P=0.40). However number of
live cells was higher for C compared to M, but did not differ from H (13.5 vs 10.4 vs 12.2; P=0.05). Similarly, percent of total live cells was higher for C compared to M, but did not differ from H (80.2 vs 72.2 vs 78.1; P=0.02). Hours of development for in vitro cultured embryos was reduced by gossypol acetic acid (77.1 vs 64.9 h; P=0.05), but no interaction between heifer diet and culture medium was observed (P=0.50). Number of cells after culture was higher for C than M and H (23.1 vs 20.3 vs 14.6; P<0.01), but culture medium did not influence cell numbers (P=0.50). Results indicate that consumption of up to 40 mg of FG/kg of BW does not influence follicle and CL development in dairy heifers, but feeding a diet with 40 mg of FG/kg of BW increased the number of degenerated embryos and hindered embryo development by day 7 after AI. Furthermore, concentrations of gossypol in vitro of 10 10 µg/mL resulted in delayed embryo development.

Results from these studies indicate that FG intake up to 40 mg/kg of BW/d does not affect follicle and CL development in Holstein heifers, but it can affect fertility by decreasing fertilization and delaying embryo development. Reduced conception and increased pregnancy loss in dairy cattle fed high dietary gossypol previously demonstrated by our laboratory might be related to reduced embryo quality and viability. When lactating dairy cows received embryos from heifers fed either no gossypol or > 20 mg of free gossypol/kg of body weight, pregnancy rates were reduced (P = 0.02) in those cows receiving embryos from gossypol-fed heifers (Galvão et al., 2004). In fact, when cows were fed 720 or 950 mg/kg of FG in the diet for the first 180 d in lactation, gossypol consumption increased from approximately 17 to 24 g/d throughout the course of the study, which resulted in marked differences in plasma gossypol concentrations in the first 150 d postpartum (Santos et al., 2002). These changes in plasma gossypol concentrations reduced conception rates and increased pregnancy losses (Table 4), which resulted in reduced overall pregnancy rates during the entire study (Figure 4; Santos et al., 2003).

Table 4. Effect of type of cottonseed and dietary gossypol on reproductive parameters in dairy cows [Santos et al., 2003].

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Whole Upland</th>
<th>Blend of Whole Upland and cracked Pima</th>
<th>P <</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrus detection rate, %</td>
<td>51.5</td>
<td>57.0</td>
<td>0.10</td>
</tr>
<tr>
<td>Conception Rate at first AI, %</td>
<td>28.2</td>
<td>29.3</td>
<td>0.73</td>
</tr>
<tr>
<td>Proportion Pregnant, %</td>
<td>79.1</td>
<td>70.6</td>
<td>0.01</td>
</tr>
<tr>
<td>Abortion, %</td>
<td>3.3</td>
<td>7.9</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Therefore, feeding Holstein heifers diets that supply > 20 mg of free gossypol/kg of BW can suppress embryo development. When these embryos are transferred into lactating cows, maintenance of pregnancy is compromised. Furthermore, when lactating cows are fed diets that result in plasma gossypol concentrations greater than 5 μg/mL, conception rates and maintenance of pregnancy are reduced. In fact, when the impact of plasma gossypol concentrations on conception rates after the first postpartum insemination was evaluated, it was observed that conception declined in a quadratic manner as plasma gossypol concentrations increased (Figure 5, Santos et al., 2003). Therefore, it is prudent to feed lactating dairy cows amounts of cottonseed that result in low plasma gossypol concentrations.
Figure 5. Probability of conception after the first postpartum artificial insemination (AI) according to plasma total gossypol (TG) concentrations [µg/ml] Quadratic effect of plasma TG on the probability of conceiving after the first postpartum AI was significant (P < 0.006).

IMPLICATIONS

Inadequate intake of nutrients and inadequate body reserves during early lactation are the major factors affecting reproductive performance of dairy cows. Improving energy balance by increasing energy intake through additional NFC or supplemental fat in the diet reduces days to first ovulation and improves conception postpartum. Growing evidence indicates that the delivery of supplemental unsaturated fatty acids to the lower gut for absorption may target reproductive tissues to alter reproductive function and fertility. We presented results from 4 experiments indicating that reproductive performance of dairy cows is influenced by dietary fatty acids when the energy concentration in the ration is maintained. However, better methods to protect these fatty acids are required if precise calculations of the supply of unsaturated lipids are to be utilized in dairy cattle ration formulation to improve fertility. Lastly, although lactating dairy cows can consume substantial amounts of gossypol with no detrimental effects on health and lactation, when plasma gossypol concentrations increase above 5 µg/mL, embryo development and establishment and maintenance of pregnancy are compromised.
REFERENCES

